

Features

- Reliable wireless transceiver module.
- Compatible with Peer to Peer, Star, Tree, or Mesh network configurations.
- AO-1501 with on board PCB ANT with 150M range (LOS). AO-1501A with external Antenna.
- -97dBm sensitivity at the receiver.
- The sensor is closed to the human eye's response.
- Good output linearity across wide illumination range and low sensitivity variation across various light sources.

Applications

- Wireless sensor network (WSN).
- Automatic residential and commercial lighting management.
- contrast enhancement for electronic Automatic signboard.
- Ambient light monitoring device for daylight and artificial light.

Description

AO-1505-LUX ZigBee light sensor, which uses the latest TI CC2530 ZigBee chip, is designed for smart home and smart building applications. This sensor integrated high efficiency RF transceiver module, ambient light sensor module, and other functional elements to control with various peripheral devices. The biggest advantage of this sensor is that due to the high rejection ratio of infrared radiation, the spectral response of the ambient light sensor is close to that of human eyes.

Ordering Information

PART NUMBER	INPUT/OUTPUT	SIGNAL DETECT	VOLTAGE	TEMPERATURE
AO-1505-LUX	DC 5V/DC 3.3V	TTL	3.3V	-30° C to 80° C

Absolute Maximum Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTE
Storage Temperature	T_S	-40	85	°C	
Supply Voltage	Vcc	-0.3	7	V	
Input Voltage	V_{IN}	2	5	V	
Operating Current	I_{OP}		40	mA	
Input RF level	RF_L		10	dBm	

Page 1 of 11 Version 1.0 Date:8/11/2014

Recommended Operating	g Conditions							
PARAMETER	SY	MBOL	MIN	MAX	ι	JNITS	Ν	IOTE
Operating ambient temperature	range	T_A	-30	80		°C		
Supply Voltage		Vcc	1.8	5.5		V		
Light Sensor Output Current		I_{PH}		5		mA		
Light Sensor Output Voltage		T _{sol}		Vcc -0.8		V		
ZigBee Module Electrica	l Characteristic		JS	MIN	ТҮР	МАХ		NOTE
	РМОГ	C Currer	nt .		5.0	8.0	mA	NOTE
-	PM1 E	PM0 DC Current				0.3	mA	
I _{core} Core current consumption	PM2 D	PM2 DC Current				1	uA	
	32-MHz XOSC mode at -100-dl	running, 1 Bm input	adio in RX power, no		24.1	29.6	mA	
-	32-MHz XOSC mode, 4.5-dBn peripherals	running, r n output p active, CI	radio in TX power, no PU idle	-,-	35.4	39.6	mA	
Peripheral Current Consump	tion							
ADC	When	convertin	g		1.2		mA	
PL. I	I	Erase			1		mA	
Flash	Burst writ	e peak cu	rrent		6		mA	
Radio Part								
RF frequency range	Programmable in betwee	1-MHz s n channe	teps, 5 MHz ls	z 2394		2507	MHz	
Radio baud rate	As def	ined by [1	[]		250		kbps	
Radio chip rate	As def	ned by []	1]		2		MChip/s	
Wireless Distance						150	m	
Communication Interface Par	t							
UART Baud Rate				4800	9600	115200	bps	

 AO-1503 reference design is suitable for systems targeting compliance with EN 300 328, EN 300 440, FCC CFR47 Part 15 and ARIB STD-T-66.

Page 2 of 11 Version 1.0 Date:8/11/2014

RF Transmitter Electrical Characteristics

V_{IN} = 3.0 V to 3.6 V, $T_{\rm C}$ = -40 °C to 85 °C, $f_{\rm c}$ = 2394 MHz to 2507 MHz

PARAMETER	TEST CONDITIONS	MIN	TYP.	MAX	UNITS	NOTE
Nominal output power	Delivered to a single-ended 50-Ω load through a balun using maximum-recommended output-power setting requires minimum –3 dBm	0	4.5	8	dBm	
Programmable output power 32 dB range	When converting		32		dB	
Optimum load impedance			69 + j29		Ω	

RF Receiver Electrical Characteristics

V_{IN} = 3.0 V to 3.6 V, $T_{\rm C}$ = -40 °C to 85 °C, $f_{\rm c}$ = 2394 MHz to 2507 MHz

PARAMETER	TEST CONDITIONS	MIN TYP.	MAX	UNITS	NOTE
Receiver sensitivity	PER = 1%	97	-92	dBm	
Saturation (maximum input level)	PER = 1%	/	10	dBm	
Frequency error tolerance	requires minimum 80 ppm	±150		ppm	
Symbol rate error tolerance	requires minimum 80 ppm	±1000		ppm	

Electro-Optical Characteristics (Ta=25°C, Vec=3.0V)

PARAMETER	TEST CONDITIONS		TYP.	MAX	UNITS	NOTE
Current Consumption	About 1.02 times of I _{PH}					
Photocurrent-1	Vcc=3V,Ev=10Lx ^(2,4)	2.6	3.8	5.0	μA	
Photocurrent-2	Vcc=3V, Ev=100Lx (2,4)	26	38	50	μA	
Photocurrent-3	Vcc=3V, Ev=100Lx (1,4)		38		μA	
Dark current	Vcc=3V, Ev=0Lux			0.1	μA	
	Vcc=3.0V, Ev=100Lx,					
Saturation Output Voltage	$R_{L} = 75 K \Omega^{(3)}$	2.2	2.3.5		V	

Page 3 of 11 Version 1.0 Date:8/11/2014

Temperature Coefficient	$T=-20^{\circ}C\sim80^{\circ}C, Ev=100Lx^{(2)}$	 0.23	 %/°C	
Power Supply Rejection Ratio	Vcc=1.8 - 6.5V, Ev=100Lx ⁽²⁾	 8.5	 %/V	
Photocurrent Ratio	-	 1	 	
Note				

- 1. Illuminance by CIE standard illuminant-A / 2856K, incandescent lamp.
- 2. Fluorescent light is used as light source. White LED is substituted in mass production.
- 3. White LED is used as light source.
- 4. The actual photocurrent depends on the package and optical designs.

Typical Electrical / Optical Characteristics Curves

Application Circuit

- Fluorescent light maybe consists of AC noise about 60Hz (AC Frequency). Thus, a capacitor of 3.3 μF, which acts as a low-pass filter, is recommended to add in parallel with resistor to by-pass the ripples if possible.
- 2. Analog signal V_{OUT} is used directly. This circuit is suitable for Ev = 1 Lx to 10,000 Lx; Increasing the brightness of the light and/or the load resistor will increase the output voltage.

Page 4 of 11 Version 1.0 Date:8/11/2014

Page 5 of 11 Version 1.0 Date:8/11/2014

Debug Interface Characteristics

$TA = -40^{\circ}C$ to 85°	$^{\circ}C, VDD = 2V$	/ to 3.6 V, unles	ss otherwise noted.
----------------------------	-----------------------	-------------------	---------------------

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP.	MAX	UNITS	NOTE
Debug clock frequency	fclk_dbg				12	MHz	(see Figure 1)
Allowed high pulse on clock	t1		35			ns	(see Figure 1)
Allowed low pulse on clock	t2		35			ns	(see Figure 1)
EXT_RESET_N low to first falling edge on debug clock	t3		167		-	ns	(see Figure 2)
Falling edge on clock to EXT_RESET_N high	t4		83		(ns	(see Figure 2)
EXT_RESET_N high to first debug command	t5		83			ns	(see Figure 2)
Debug data setup	t6		2			ns	(see Figure 3)
Debug data hold	t7		4			ns	(see Figure 3)
Clock-to-data delay	t8	Load = 10 pF	,		30	ns	(see Figure 3)

Page 6 of 11 Version 1.0 Date:8/11/2014

AO-1505-LUX ZigBee Light Sensor

Page 7 of 11 Version 1.0 Date:8/11/2014

Sensor module Dimensions and Terminals

Page 8 of 11 Version 1.0 Date:8/11/2014

Sensor board Dimensions

Page 9 of 11 Version 1.0 Date:8/11/2014

Page 10 of 11 Version 1.0 Date:8/11/2014

Relay Control Interface

PIN Terminals	Description
PIN 1	Relay +V _{CC}
PIN 2	Relay +V _{CC}
PIN 3	Relay $+V_{CC}$
PIN 4	Relay $+V_{CC}$
PIN 5	GND
PIN 6	IO_1 (output control)
PIN 7	GND
PIN 8	IO_2 (output control)
PIN 9	GND
PIN 10	IO_3 (output control)
PIN 11	GND
PIN 12	IO_4 (output control)

Page 11 of 11 Version 1.0 Date:8/11/2014